Definición de las Medidas Estadísticas de Distribución

Medidas de Distribución - Asimetría y Curtosis

Las medidas de distribución nos permiten identificar la forma en que se separan o aglomeran los valores de acuerdo a su representación gráfica. Estas medidas describen la manera como los datos tienden a reunirse de acuerdo con la frecuencia con que se hallen dentro de la información. Su utilidad radica en la posibilidad de identificar las características de la distribución sin necesidad de generar el gráfico. Sus principales medidas son la Asimetría y la Curtosis.

1. ASIMETRÍA

Esta medida nos permite identificar si los datos se distribuyen de forma uniforme alrededor del punto central (Media aritmética). La asimetría presenta tres estados diferentes, cada uno de los cuales define de forma concisa como están distribuidos los datos respecto al eje de asimetría. Se dice que la asimetría es positiva cuando la mayoría de los datos se encuentran por encima del valor de la media aritmética, la curva es Simétrica cuando se distribuyen aproximadamente la misma cantidad de valores en ambos lados de la media y se conoce como asimetría negativa cuando la mayor cantidad de datos se aglomeran en los valores menores que la media.

2. CURTOSIS

Esta medida determina el grado de concentración que presentan los valores en la región central de la distribución. Por medio del Coeficiente de Curtosis, podemos identificar si existe una gran concentración de valores (Leptocúrtica), una concentración normal (Mesocúrtica) ó una baja concentración (Platicúrtica). 

Cuando la distribución de los datos cuenta con un coeficiente de asimetría y un coeficiente de Curtosis, se le denomina Curva Normal. Este criterio es de suma importancia ya que para la mayoría de los procedimientos de la estadística de inferencia se requiere que los datos se distribuyan normalmente.
La principal ventaja de la distribución normal radica en el supuesto que el 95% de los valores se encuentra dentro de una distancia de dos desviaciones estándar de la media aritmética; es decir, si tomamos la media y le sumamos dos veces la desviación y después le restamos a la media dos desviaciones, el 95% de los casos se encontraría dentro del rango que compongan estos valores.


Fuente: http://www.spssfree.com/curso-de-spss/analisis-descriptivo/medidas-de-distribucion-curtosis-asimetria.html

Comentarios

Entradas más populares de este blog

Definición de Correlación de Pearson y Alfa Cronbach

Estadística Descriptiva y las Medidas de Centralización

DEFINICIÓN DE LA CORRELACIÓN DE SPEARMAN